
Меньшая стороны треугольника равна 50 см .найти остальные стороны этого треугольника ,если стороны
подобного ему треугольника равны 12,5 см,18см,15 см

Ответы на вопрос

Ответ: 60 и 72



Я могу помочь вам решить эту задачу.
Два треугольника называются подобными, если их углы равны и их стороны пропорциональны. То есть, если треугольники ABC и DEF подобны, то
$$\angle A = \angle D, \angle B = \angle E, \angle C = \angle F$$
и
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = k$$
где k - это коэффициент подобия.
В данной задаче, известно, что меньшая сторона треугольника равна 50 см, а стороны подобного ему треугольника равны 12,5 см, 18 см и 15 см. Предположим, что меньшая сторона треугольника соответствует стороне 12,5 см подобного треугольника. Тогда, чтобы найти остальные стороны этого треугольника, нужно использовать пропорцию:
$$\frac{50}{12,5} = \frac{x}{18} = \frac{y}{15}$$
где x и y - это искомые стороны. Решая эту пропорцию, получаем:
$$x = \frac{50 \cdot 18}{12,5} = 72$$
$$y = \frac{50 \cdot 15}{12,5} = 60$$
Таким образом, остальные стороны этого треугольника равны 72 см и 60 см. Надеюсь, это помогло вам понять решение.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili