
Знайдіть основи трапеції, якщо вони відносяться як 3:5, а середня лінія дорівнює 24см. Менша
основа.....- см, більша основа.....- см.

Ответы на вопрос

Ответ:
Средняя линия трапеции-полусумма оснований
Сумма оснований
24•2=48 см
Меньшее основание 3Х
БОльшее основание 5Х
3Х+5Х=48 см
8Х=48
Х=48:8
Х=6
Меньшее основание
6•3=18 см
БОльшее основание
6•5=30 см
Объяснение:



Finding the Lengths of the Bases of a Trapezoid
To find the lengths of the bases of a trapezoid when the ratio of the bases is 3:5 and the median is 24 cm, we can use the following steps:
1. Understand the Relationship Between the Median and the Bases: - The median of a trapezoid is the line segment that joins the midpoints of the two non-parallel sides of the trapezoid.
2. Use the Median to Find the Average of the Bases: - The median of a trapezoid is equal to the average of the lengths of the two bases.
3. Apply the Given Ratio to Find the Lengths of the Bases: - Since the ratio of the bases is 3:5, we can use this ratio to find the lengths of the bases.
Calculating the Lengths of the Bases
Given: - Ratio of the bases: 3:5 - Median length: 24 cm
Let's denote the lengths of the smaller and larger bases as x and y respectively.
Using the given ratio, we can express the relationship between the lengths of the bases as: - x:y = 3:5
We also know that the median is equal to the average of the lengths of the bases: - (x + y) / 2 = 24
Solving for the Lengths of the Bases
To find the lengths of the bases, we can use the relationship between the bases and the median:
1. From the ratio x:y = 3:5, we can express one variable in terms of the other. Let's solve for y in terms of x: - y = (5/3)x
2. Substitute the expression for y into the equation for the median: - (x + (5/3)x) / 2 = 24 - (8/3)x / 2 = 24 - (4/3)x = 24 - x = 24 * (3/4) - x = 18
3. Now that we have the value of x, we can find the value of y using the ratio: - y = (5/3)*18 - y = 30
Conclusion
Therefore, the lengths of the bases are: - The smaller base: 18 cm - The larger base: 30 cm


Finding the Lengths of the Bases of a Trapezoid
To find the lengths of the bases of a trapezoid, we can use the given ratio and the length of the median line. Let's solve the problem step by step.
Given information: - The ratio of the bases is 3:5. - The length of the median line is 24 cm. - The length of the smaller base is unknown. - The length of the larger base is also unknown.
Let's assume the length of the smaller base is x cm. Since the ratio of the bases is 3:5, the length of the larger base can be represented as (5/3)x cm.
Now, we know that the median line of a trapezoid is the average of the lengths of the bases. In this case, the median line is given as 24 cm. So, we can set up the following equation:
((x + (5/3)x) / 2) = 24
Simplifying the equation, we get:
((8/3)x) / 2 = 24
Multiplying both sides by 2, we have:
(8/3)x = 48
To isolate x, we can multiply both sides by 3/8:
x = (3/8) * 48
Simplifying further, we find:
x = 18
Therefore, the length of the smaller base is 18 cm.
To find the length of the larger base, we can substitute the value of x into the expression (5/3)x:
Length of larger base = (5/3) * 18 = 30
Therefore, the length of the larger base is 30 cm.
In summary: - The length of the smaller base is 18 cm. - The length of the larger base is 30 cm.
Please let me know if there's anything else I can help you with!


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili