Вопрос задан 08.12.2023 в 07:50. Предмет Геометрия. Спрашивает Штырхунов Ярослав.

Найти наибольший угол треугольника со сторонами 1 см, корень 2см и корень 5см

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ким Костян.

Ответ:

а = 135°

Объяснение:

в треугольнике против бОльшей стороны лежит бОльший угол.

а=1 см

b=√2 см

c=√5 см

1<√2<√5

=> бОльший угол лежит против стороны с =√5 см

по теореме косинусов ( продолжение во вложении)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения наибольшего угла треугольника со сторонами 1 см, корень 2см и корень 5см, можно использовать теорему косинусов. Теорема косинусов утверждает, что квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Наибольшим углом будет являться тот, который лежит напротив большей стороны. В данном случае, большей стороной является корень 5см, поэтому наибольший угол обозначим как α. Тогда, по теореме косинусов, мы можем найти косинус этого угла по формуле:

cos ⁡ α = 1 2 + 2 − 5 2 ⋅ 1 ⋅ 2 = − 1 4 {\\displaystyle \\cos \\alpha = {\\frac {1^ {2}+2^ {2}-5} {2\\cdot 1\\cdot 2}}=- {\\frac {1} {4}}}

Для нахождения угла α в градусах, нужно воспользоваться обратной тригонометрической функцией арккосинус. Арккосинус отрицательной четверти равен 104,48°. Таким образом, наибольший угол треугольника равен 104,48°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос