
Срочно Пожалуйста Векторы m i n равны. Известно, что m(x; -5) и n(4; у). Найдите значение х и у.


Ответы на вопрос

Два вектора А и В равны тогда и только тогда, когда имеют одинаковые координаты и направление.
m=n, тогда х=4, у=-5. Их общая координата (4;-5)



Для решения этой задачи давайте воспользуемся фактом равенства векторов. Если векторы \( \mathbf{m} \) и \( \mathbf{n} \) равны, то соответствующие координаты этих векторов также равны.
В данном случае у нас есть векторы \( \mathbf{m} \) и \( \mathbf{n} \), где:
\[ \mathbf{m} = \begin{bmatrix} x \\ -5 \end{bmatrix} \] \[ \mathbf{n} = \begin{bmatrix} 4 \\ y \end{bmatrix} \]
Согласно условию, эти векторы равны. Поэтому можно записать уравнения для соответствующих координат:
1. Для первой координаты: \( x = 4 \) 2. Для второй координаты: \( -5 = y \)
Таким образом, мы находим значения переменных \( x \) и \( y \):
1. \( x = 4 \) 2. \( y = -5 \)
Так что, \( x = 4 \) и \( y = -5 \).


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili