
2. При пересечении двух хорд одна из них делится на отрезки 10 см и 5 см, а вторая на отрезки, один
из которых меньше другого на 2 см. Найти длину второй хорды

Ответы на вопрос

Ответ:
Пусть один отрезок второй хорды равен Х. Тогда второй отрезок равен x + 2
Произведения длин отрезков хорд равны, поэтому получаем уравнение.
X^ * (X + 2) =4^ * 20=80
x^ 2 +2^ * X - 80 = 0
X_{1} = - 10 (не подходит) X_{2} = 8
Итак, отрезки второй хорды 8 см и 8 + 2 = 10 см, а ее общая длина 8 + 10 = 18cM



Для решения этой задачи нам нужно использовать свойства пересекающихся хорд в круге. Одно из основных свойств заключается в том, что при пересечении двух хорд они делятся друг на друга так, что произведение длин отрезков каждой хорды равно.
Обозначим длину первой хорды как \( a + b \), где \( a \) и \( b \) - длины отрезков, на которые делится первая хорда.
Также обозначим длину второй хорды как \( c + d \), где \( c \) и \( d \) - длины отрезков, на которые делится вторая хорда.
Условие задачи гласит, что одна из хорд делится на отрезки 10 см и 5 см, а вторая - на отрезки, один из которых меньше другого на 2 см.
По свойствам хорд в круге:
1. Для первой хорды: \( (a + b) = 10 \times 5 \).
2. Для второй хорды: \( (c + d) = (c - 2) \times (c + 2) \).
Мы получили систему уравнений, которую нужно решить. Решим первое уравнение:
\[ a + b = 10 \times 5 \]
\[ a + b = 50 \]
Теперь решим второе уравнение:
\[ (c + d) = (c - 2) \times (c + 2) \]
Раскроем скобки:
\[ c + d = c^2 - 2^2 \]
\[ c + d = c^2 - 4 \]
\[ 0 = c^2 - c - 4 - d \]
\[ c^2 - c - 4 - d = 0 \]
Теперь мы можем использовать информацию о том, что один из отрезков второй хорды меньше другого на 2 см. Предположим, что \( c \) - более длинный отрезок, тогда \( d = c - 2 \).
Подставим это в уравнение:
\[ c^2 - c - 4 - (c - 2) = 0 \]
Решив это уравнение, мы найдем значения \( c \) и \( d \).
После того, как мы найдем \( c \) и \( d \), мы можем найти длину второй хорды:
\[ c + d \]


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili