
Если стороны двух треугольников соответственно равны 3,4 мм, 4,7 мм, 1 см и 6,8 см, 9,4 см, 20 см,
то будут ли эти треугольники подобны? 

Ответы на вопрос

Ответ:
Да
Объяснение:
первый треугольник в двадцать раз меньше второго



Ответ:
Да
Объяснение:
Сама проверяла в онлайн мектеп



Для того чтобы определить, подобны ли два треугольника, нужно проверить, выполняется ли условие подобия треугольников. Условие подобия требует, чтобы все соответственные стороны двух треугольников были пропорциональными. Это означает, что отношения длин соответственных сторон в одном треугольнике должны быть равны отношениям длин соответственных сторон в другом треугольнике.
В данном случае у нас есть два треугольника:
Первый треугольник: - Сторона a = 3 мм - Сторона b = 4,7 мм - Сторона c = 1 см = 10 мм
Второй треугольник: - Сторона A = 6,8 см = 68 мм - Сторона B = 9,4 см = 94 мм - Сторона C = 20 см = 200 мм
Теперь давайте проверим, выполняется ли условие подобия треугольников, то есть, являются ли отношения длин соответственных сторон пропорциональными. Мы можем сравнить отношения сторон первого треугольника к сторонам второго треугольника:
a/A = 3 мм / 68 мм ≈ 0,0441 b/B = 4,7 мм / 94 мм ≈ 0,05 c/C = 10 мм / 200 мм = 0,05
Как видно, отношения сторон a/A и b/B не равны отношению c/C, поэтому треугольники не являются подобными. Для того чтобы треугольники были подобными, все три отношения должны быть равными.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili