Вопрос задан 24.10.2023 в 03:27. Предмет Геометрия. Спрашивает Беркут Илья.

Боковая сторона AB трапеции ABCD образует с основанием угол 30 °. Вычисли высоту BK, если сторона

AB равна 104 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Климочкин Никита.

Ответ: 52

Высота BK образует с трапецией треугольник ABK.

Угол при основании (угол между катетом и гипотенузой) равен 30 градусов, следовательно сторона, лежащая против этого угла (BK), равна половине гипотенузы.

BK = 1/2AB.

BK=1/2*104=104/2=52.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для вычисления высоты BK трапеции ABCD, имея сторону AB и угол 30 градусов между боковой стороной AB и одной из параллельных сторон, мы можем использовать тригонометрическую функцию синуса.

Высота BK является противоположной стороной к углу 30 градусов, а сторона AB является гипотенузой прямоугольного треугольника, образованного боковой стороной AB и высотой BK. Таким образом, мы можем использовать следующее соотношение:

sin(30°) = BK / AB

sin(30°) = 1/2 (поскольку sin(30°) равен 1/2)

Теперь мы можем найти высоту BK:

BK = (1/2) * AB BK = (1/2) * 104 см BK = 52 см

Итак, высота BK трапеции ABCD равна 52 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос