Вопрос задан 21.10.2023 в 16:09. Предмет Геометрия. Спрашивает Кошелев Максим.

Катеты прямоугольного треугольника равны 1 см и 75 см. Определите гипотенузу.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дромашко Юля.
C^2=a^2+b^2
c^2=1+75^2
c^2=5626
c=75
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения длины гипотенузы прямоугольного треугольника, если известны длины катетов, вы можете воспользоваться теоремой Пифагора. Теорема Пифагора утверждает, что сумма квадратов длин катетов равна квадрату длины гипотенузы. Математически это можно записать следующим образом:

гипотенуза^2 = катет1^2 + катет2^2

где гипотенуза - длина гипотенузы, катет1 и катет2 - длины катетов.

В вашем случае: катет1 = 1 см катет2 = 75 см

Теперь подставим эти значения в формулу:

гипотенуза^2 = 1^2 + 75^2 гипотенуза^2 = 1 + 5625 гипотенуза^2 = 5626

Чтобы найти длину гипотенузы, возьмем квадратный корень с обеих сторон:

гипотенуза = √5626

Вычислите значение √5626, и это будет длина гипотенузы прямоугольного треугольника.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос