
Радиус основания конуса 16 см .Через вершину конуса проведено сечение пересекающая его основание по
хорде которая видна из центра основания под углом 60 градусов высота равняется 24 сантиметра Найти угол между плоскостью сечения и плоскостью основания

Ответы на вопрос

16*√3/2=8√3
tg(a)=24/8√3=√3
a= 60 гр.



Calculation of the Angle between the Plane of the Section and the Plane of the Base
To find the angle between the plane of the section and the plane of the base of the cone, we can use the given information about the cone's radius, height, and the angle at which the chord is visible from the center of the base.
Given: - Radius of the cone's base = 16 cm - Height of the cone = 24 cm - Angle between the chord and the line of sight from the center of the base = 60 degrees
To calculate the angle between the plane of the section and the plane of the base, we can use trigonometry.
Let's denote the angle between the plane of the section and the plane of the base as θ.
To find θ, we need to find the angle between the chord and the radius of the base. Let's denote this angle as α.
Using trigonometry, we can determine α by considering the right triangle formed by the radius, the height, and the line of sight from the center of the base.
In the right triangle: - The opposite side is the height of the cone = 24 cm - The adjacent side is half the length of the chord = (1/2) * 2 * 16 cm = 16 cm - The hypotenuse is the radius of the base = 16 cm
Using the trigonometric function tangent (tan), we can calculate α:
tan(α) = opposite/adjacent = 24/16 = 3/2
Taking the inverse tangent (arctan) of both sides, we can find α:
α = arctan(3/2) ≈ 56.31 degrees
Now, we can find the angle θ between the plane of the section and the plane of the base by subtracting α from the given angle of 60 degrees:
θ = 60 - α ≈ 60 - 56.31 ≈ 3.69 degrees
Therefore, the angle between the plane of the section and the plane of the base is approximately 3.69 degrees.
Please note that the calculations are approximate due to rounding.
Calculation Steps:
1. Calculate the angle α using the tangent function: α = arctan(3/2) ≈ 56.31 degrees. 2. Subtract α from the given angle of 60 degrees to find θ: θ = 60 - α ≈ 60 - 56.31 ≈ 3.69 degrees.Please let me know if I can help you with anything else.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili