Вопрос задан 04.10.2023 в 05:42. Предмет Геометрия. Спрашивает Анточ Руслан.

Найдите длину образующей конуса с высотой 4 см и диаметром основания 6 см.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шибко Оля.

Ответ:

5

Объяснение:

Дано: d=6см; h=4. значит радиус равен 3 по теореме Пифагора находим гипотенузу- она же образующая конуса. с^2= a^2+ b^2; с^2=4^2+3^2=16+9=25; с= 5см.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения длины образующей конуса можно использовать теорему Пифагора, так как образующая, высота и радиус основания образуют прямоугольный треугольник.

По условию: Высота конуса (h) = 4 см Диаметр основания (d) = 6 см Радиус основания (r) = диаметр / 2 = 6 см / 2 = 3 см

Теперь мы можем применить теорему Пифагора к этому треугольнику, где одна сторона - радиус основания (r), другая сторона - половина диаметра основания (также r), а гипотенуза - образующая (l).

l^2 = r^2 + r^2

l^2 = 3^2 + 3^2

l^2 = 9 + 9

l^2 = 18

Теперь найдем длину образующей (l):

l = √18 ≈ 4.24 см

Таким образом, длина образующей конуса составляет примерно 4.24 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос