Вопрос задан 03.10.2023 в 20:57. Предмет Геометрия. Спрашивает Сенина Карина.

У паралелограмі АВСD кут А дорівнює 60⁰. Висота ВЕ ділить стороні AD на 2 рівних частини. Знайти

периметр трикутника ABD, якщо периметр паралелограма ABCD дорівнює Р.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лепёхин Алексей.

Ответ:

Рabd =  3P/4  ед.

Объяснение:

В прямоугольном треугольнике АВЕ ∠ АВЕ = 30° (по сумме острых углов). Против угла 30° лежит катет АЕ. Значит АВ = 2АЕ  => AD = AB  => треугольник ABD равносторонний.

АВ = Р/4 (так как ABCD - ромб).

Рabd = 3·AB = 3P/4  ед.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте розглянемо паралелограм ABCD. Оскільки кут А дорівнює 60 градусів, ми знаємо, що кути B і C також дорівнюють 60 градусів, оскільки сума кутів при основі паралелограма дорівнює 180 градусів.

Позначимо довжину сторони AD як "a". Оскільки ВЕ ділить сторону AD на 2 рівні частини, то ВЕ = a/2.

Тепер давайте розглянемо трикутник ABD. Він має дві сторони довжиною a/2 та одну сторону довжиною a. Оскільки периметр трикутника рівний сумі довжин його сторін, периметр трикутника ABD дорівнює:

P(ABD) = a/2 + a + a/2 = 2a

Тепер ми повинні знати значення периметра паралелограма ABCD (P), щоб знайти периметр трикутника ABD. Якщо вам відомий периметр паралелограма ABCD, ви можете знайти значення "a", а потім знайти периметр трикутника ABD за допомогою формули, яку ми вже розрахували.

Якщо у вас є значення периметра P паралелограма ABCD, то можна розв'язати рівняння:

P = 2a + 2b,

де "b" - довжина однієї сторони паралелограма (BC або CD).

Знаючи значення кута А (60 градусів) і довжину сторони "b", можна знайти сторону "a" за допомогою тригонометричних функцій. Давайте розглянемо трикутник ABC, де ми маємо кут 60 градусів при вершині A. Ми можемо використовувати тригонометричні відношення для цього трикутника:

cos(60°) = b / a.

cos(60°) дорівнює 1/2, тому:

1/2 = b / a.

Звідси можна знайти a:

a = 2b.

Тепер, підставивши значення "a" у рівняння для периметра трикутника ABD, отримаємо:

P(ABD) = 2a = 2(2b) = 4b.

Отже, периметр трикутника ABD дорівнює 4 рази довжині однієї зі сторін паралелограма ABCD.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос