Вопрос задан 01.10.2023 в 11:54. Предмет Геометрия. Спрашивает Кот Вика.

В основании прямоугольного параллелепипеда лежит квадрат. Диагональ параллелепипеда равна 15 см, а

диагональ боковой грани – 12 см. Найти высоту параллелепипеда, если площадь боковой поверхности равна 108√7 см^2.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Самборский Артем.

Ответ:

высота прямоугольного параллелепипеда =37 см

Объяснение:

решение во вложении


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим следующие величины:

Пусть сторона квадрата, лежащего в основании параллелепипеда, равна "a" см.

Пусть высота параллелепипеда равна "h" см.

Дано:

  1. Диагональ параллелепипеда равна 15 см, что можно выразить через стороны основания и высоту используя теорему Пифагора: 15^2 = a^2 + a^2 + h^2 225 = 2a^2 + h^2

  2. Диагональ боковой грани параллелепипеда равна 12 см, что также можно выразить через стороны основания и высоту: 12^2 = a^2 + h^2

  3. Площадь боковой поверхности параллелепипеда равна 108√7 см^2: S = 2ah + 2ah + 2ah = 6ah = 108√7

Теперь у нас есть система из трех уравнений с двумя неизвестными:

  1. 2a^2 + h^2 = 225
  2. a^2 + h^2 = 144
  3. 6ah = 108√7

Сначала решим уравнения (1) и (2) относительно a^2 и h^2:

Вычитаем уравнение (2) из уравнения (1):

(2a^2 + h^2) - (a^2 + h^2) = 225 - 144 a^2 = 81 a = 9 см

Теперь, найдем h^2:

a^2 + h^2 = 144 81 + h^2 = 144 h^2 = 144 - 81 h^2 = 63

Теперь у нас есть значение a и h^2. Мы можем найти h:

h = √63 h = 3√7 см

Таким образом, высота параллелепипеда равна 3√7 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос