
У крузі радіусом 8 см проведена хорда, що дорівнює стороні квадрата, вписаного в цей круг.
Знайдіть площу більшого з отриманих сегментів *

Ответы на вопрос

Відповідь:
182.79644736
Пояснення:
Знайдемо сторону квадрата а, вписаного в круг
а=R√2
Тоді, площа меншого сегмента обрахофується за формулою
S=R^2×arcsin(a/(2R))-a/4×√(4R^2-a^2)
S=64arcsin(8√2/16)-8√2/4×√(4×64-2×64)=64arcsin(√2/2)-2√2×8√2=64×pi/4-32=16pi-32 =18.265482457
Площе сегмента можна вирахувати як площу сектора- площу трикутника, яка дорівнює четвертій частині площі квадрата
Площа сектора, так як кут між діагоналями квадрата дорівнює 90°=рі/2, дорівнює
S=pi/2×R^2/2-a^2/4=16pi-32
Знайдемо площу кола
S○=pi×R^2=pi×64=201.06192982
Тоді більший сектор буде різницею площі кола й меншого сектора
S◐=S○-S=201.06192982-18.265482457 =182.79644736=58pi



Це задача на геометрію, так? Перепрошую за мої здогадки, але здається, ми маємо коло, вписаний квадрат і хорду, яка є стороною цього квадрата. Якщо так, можливо, ми повинні використати властивості кутів та радіусів, щоб розглянути певні трикутники та сегменти. Ну, маєте які-небудь ідеї щодо розв'язання?


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili