
Вопрос задан 26.09.2023 в 16:57.
Предмет Геометрия.
Спрашивает Алиева Мадина.
Как изменится объём цилиндра, если его высоту уменьшить в 4 раза, а радиус основания увеличить в 2
раза?

Ответы на вопрос

Отвечает Красуля Татьяна.
Ответ:
не измениться?
Объяснение:
хз



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Объем цилиндра вычисляется по формуле:
V = π * r^2 * h,
где: V - объем цилиндра, π (пи) - математическая константа, примерно равная 3.14159, r - радиус основания цилиндра, h - высота цилиндра.
Если вы уменьшите высоту цилиндра в 4 раза и увеличите радиус основания в 2 раза, то новые значения высоты (h') и радиуса (r') можно записать как:
h' = h / 4, r' = 2r.
Теперь мы можем выразить объем нового цилиндра (V') через новые значения высоты и радиуса:
V' = π * (r')^2 * h', = π * (2r)^2 * (h / 4), = π * 4r^2 * (h / 4), = π * r^2 * h.
Таким образом, объем цилиндра не изменится, если вы уменьшите его высоту в 4 раза и увеличите радиус основания в 2 раза.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili