Вопрос задан 26.09.2023 в 16:43. Предмет Геометрия. Спрашивает Тимуров Тимур.

В прямоугольном треугольнике АВС, <А=90•, АВ=5 см и <С=60•. Найдите АС и ВС

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кот Тина.

Ответ:

решение смотри на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим стороны треугольника следующим образом:

  • Пусть AB = 5 см.
  • Пусть AC = x см.
  • Пусть BC = y см.

Из условия треугольника следует, что угол BAC = 90°, угол BCA = 60° и угол ABC = 30° (поскольку сумма углов треугольника равна 180°).

Используя синусы и косинусы для прямоугольного треугольника, мы можем записать следующие уравнения:

  1. Для угла ABC (30°): sin(30°)=ACAB=x5\sin(30°) = \frac{AC}{AB} = \frac{x}{5}

  2. Для угла BCA (60°): cos(60°)=ACBC=xy\cos(60°) = \frac{AC}{BC} = \frac{x}{y}

Теперь нам нужно выразить y через x, чтобы у нас было только одно неизвестное:

Из уравнения 2 получаем: y=xcos(60°)=x12=2xy = \frac{x}{\cos(60°)} = \frac{x}{\frac{1}{2}} = 2x

Теперь подставим это значение y в уравнение 1: sin(30°)=x5\sin(30°) = \frac{x}{5}

12=x5\frac{1}{2} = \frac{x}{5}

x=2.5x = 2.5

Теперь, зная x, мы можем найти y: y=2x=22.5=5y = 2x = 2 \cdot 2.5 = 5

Итак, AC = 2.5 см, а BC = 5 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос