
Гострий кут рівнобічної трапеції дорівнює 60°, а більша основа більша за бічну сторону на 10 см.
Знайти меншу основу трапеції, якщо ії діагональ дорівнює 14 см.

Ответы на вопрос

Дано: чотирикутник ABCD - рівнобічна трапеція (AB = CD); ∠BAD = 60°, BD = 14 см.
Знайти: BC - ?
Розв'язання. Нехай х см - довжина більшої основи (AD) трапеції. Тоді (х - 10)см - довжина бокової сторони трапеції (AB). Скористаємося теоремою косінусів - твердженням про властивість довільних трикутників, що є узагальненням теореми Піфагора.
BD² = AD² + AB² - 2 × AD × AB × cos∠BAD
14² = x² + (x - 10)² - 2 × x × (x - 10) × cos60°
196 = x² + x² - 20x + 100 - 2(x² - 10x) × 1/2
196 = x² - 10x + 100
x² - 10x - 96 = 0
Скористаємося теоремою Вієта:
х₁ + х₂ = 10
х₁ × х₂ = -96
x₁ = -6 (не задовольняє умові задачі); x₂ = 16
Тоді АD = 16 см, а AB = 16 - 10 = 6 см.
Для того, щоб знайти меншу основу рівнобічної трапеції проведемо дві висоти ВК та СМ з точок В і С відповідно (див. рисунок). Вони утворюють прямокутник, у якого менша основа трапеції ВС дорівнює відрізку КМ, який належить більшій основі AD.
KM = AD - AK - MD = AD - 2AK (тому що AK = MD).
Щоб знайти відрізок АК, розглянемо трикутник АВК (∠AKB = 90°):
cosα = AK/AB ⇒ AK = AB × cosα = 6 × 1/2 = 3 (cм)
Отже, KM = AD - 2AK = 16 - 2 × 3 = 10 (см) = BC
Відповідь: ВС = 10 см.




Давайте позначимо меншу основу трапеції як "x" (в сантиметрах). Тоді більша основа буде "x + 10" (оскільки більша основа більша за бічну сторону на 10 см).
Також, ми маємо даний кут гострої вершини трапеції, який дорівнює 60°.
Діагональ трапеції (позначимо її як "d") можна знайти за допомогою теореми косинусів для трикутника:
Тепер розв'яжемо це рівняння для "x".


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili