 
Вопрос задан 19.07.2018 в 01:35.
Предмет Геометрия.
Спрашивает Енковский Максим.
В равнобедренном треугольнике АВС (АВ=ВС) вписана окружность. Величина высоты ВD, опущенной из
вершины треугольника, равна 8. Найдите радиус вписанной окружности, если косинус угла А = 0,6 0
        0
         0
        0
    Ответы на вопрос
 
        Отвечает Мудрых Полина.
                
    сosA=sinB, отсюда cosB=√1-sin²B=√1-0,36=0,8
отсюда АВ=8/0,8=10, т.к АВ=ВС по условию то ВС тоже равно 10
теперь рассмотрим треугольник BАD
AD по теореме пифагора √100-64=6
тогда DC равно 10-6=4
ВС по теореме пифагора равно √8²+4²=4√5
cosB=sinA, отсюда площадь АВ*ВС*0,5*0.8=40
r-вписанной окружности равен S/p, где p - полуперимтрданного треугольника 
p=(a+b+c)/2=(10+10+4√5)/2=2(5+√5)
подставляем данное значение в формулу выше и получаем
40/2(5+√5)=10/(5+√5) или 1.4
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
	- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			