
Вопрос задан 19.07.2018 в 01:35.
Предмет Геометрия.
Спрашивает Енковский Максим.
В равнобедренном треугольнике АВС (АВ=ВС) вписана окружность. Величина высоты ВD, опущенной из
вершины треугольника, равна 8. Найдите радиус вписанной окружности, если косинус угла А = 0,6

Ответы на вопрос

Отвечает Мудрых Полина.
сosA=sinB, отсюда cosB=√1-sin²B=√1-0,36=0,8
отсюда АВ=8/0,8=10, т.к АВ=ВС по условию то ВС тоже равно 10
теперь рассмотрим треугольник BАD
AD по теореме пифагора √100-64=6
тогда DC равно 10-6=4
ВС по теореме пифагора равно √8²+4²=4√5
cosB=sinA, отсюда площадь АВ*ВС*0,5*0.8=40
r-вписанной окружности равен S/p, где p - полуперимтрданного треугольника
p=(a+b+c)/2=(10+10+4√5)/2=2(5+√5)
подставляем данное значение в формулу выше и получаем
40/2(5+√5)=10/(5+√5) или 1.4


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili