Вопрос задан 22.07.2023 в 15:26. Предмет Геометрия. Спрашивает Кабдылкаримова Надия.

Один из катетов прямоугольного треугольника на 1 см меньше гипотенузы, а второй катет равен 5 см.

Найти гипотенузу треугольника
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Anoshina Angelina.

пожалуйста)))))))))))))


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим катеты прямоугольного треугольника как xx и yy, а гипотенузу обозначим как zz.

У нас есть два условия:

  1. Один из катетов (давайте предположим, что это xx) на 1 см меньше гипотенузы zz: x=z1x = z - 1.
  2. Второй катет равен 5 см: y=5y = 5.

Мы знаем, что в прямоугольном треугольнике выполняется теорема Пифагора:

z2=x2+y2z^2 = x^2 + y^2

Подставим значения, которые мы знаем:

(z1)2+52=z2(z - 1)^2 + 5^2 = z^2

Теперь раскроем скобки и упростим уравнение:

z22z+1+25=z2z^2 - 2z + 1 + 25 = z^2

Теперь сократим z2z^2 на обеих сторонах:

2z+26=0-2z + 26 = 0

Теперь выразим zz:

2z=262z = 26

z=262z = \frac{26}{2}

z=13z = 13

Таким образом, гипотенуза прямоугольного треугольника равна 13 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос