Вопрос задан 19.07.2023 в 02:57. Предмет Геометрия. Спрашивает Тарасов Влад.

Найдите координаты точек пересечения двух окружностей: и

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хоменко Артём.

Отняв первое и второе уравнение, получим 16x - 16y = 0 откуда

x = y. Тогда поставляя x = y в первое уравнение, мы получим

y² + y² + 8y - 8y = 8

2y² = 8

y² = 4

y = ±2

x = ±2

Таким образом, (±2; ±2) - точки пересечения двух окружностей.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

К сожалению, вы не предоставили уравнения окружностей, поэтому я не могу точно найти их точки пересечения. Однако я могу показать вам общий метод решения системы уравнений двух окружностей.

Предположим, что у нас есть две окружности с центрами (x1, y1) и (x2, y2) и радиусами r1 и r2 соответственно. Уравнение окружности может быть записано в виде:

Окружность 1: (x - x1)^2 + (y - y1)^2 = r1^2 Окружность 2: (x - x2)^2 + (y - y2)^2 = r2^2

Для нахождения точек пересечения, вам необходимо решить эту систему уравнений. Существует несколько способов сделать это, включая подстановку и методы элиминации. Выбор метода зависит от конкретной системы уравнений.

Как только вы решите систему уравнений и найдете значения x и y для точек пересечения, вы сможете найти координаты этих точек.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос