
Периметр ромба равен 20 см, произведение его диагоналей равно 48 см². Найдите высоту ромба.


Ответы на вопрос

Ответ:
1)Находим сторону ромба:
20:4=5
2) Чтобы найти высоту ромба, приравниваем формулы S ромба: S=aH и S=1/2*D1*D2
5*H=1/2*48
5*H=24
H=24:5
H=4,8
Ответ:H=4,8
Объяснение:



Для решения данной задачи воспользуемся следующими свойствами ромба:
- Периметр ромба равен сумме длин его сторон: P = 4a, где a - длина стороны ромба.
- Произведение диагоналей ромба равно удвоенной площади ромба: D₁ * D₂ = 2S, где D₁ и D₂ - диагонали ромба, S - площадь ромба.
По условию задачи известно, что периметр ромба равен 20 см (P = 20 см) и произведение его диагоналей равно 48 см² (D₁ * D₂ = 48 см²).
Из первого свойства ромба следует, что a = P/4 = 20/4 = 5 см.
Используя второе свойство ромба, найдем площадь ромба: S = (D₁ * D₂)/2 = 48/2 = 24 см².
Площадь ромба можно также выразить через его высоту h по формуле: S = a * h, где a - длина стороны ромба, h - высота ромба.
Подставив известные значения, получим: 24 = 5 * h.
Решим это уравнение относительно h: h = 24/5 = 4.8 см.
Таким образом, высота ромба равна 4.8 см.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili