Вопрос задан 12.07.2023 в 18:40. Предмет Геометрия. Спрашивает Протас Полина.

ΔABC — равнобедренный, AB=BC, ∡A+∡C= 156°. Определи величину∡A. 1. Назови равные углы в этом

треугольнике (в ответе следует использовать большие латинские буквы) ∡ = ∡ . 2. ∡A = °.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хорохорина Ксюша.

Ответ:

1. ∠А =∠ С. 2  ∠ А= 78°

Объяснение:

Если угол А+ С= 156°, то 156°:2°= 78° ( так как треугольник равнобедренный)    А в равно бедренном треугольнике мы знаем что углы при основании равны.                                                                                                                                    Значит ∠ А=∠С=78

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. В равнобедренном треугольнике ΔABC равные углы находятся при основании, то есть углы ∡A и ∡C равны друг другу. Поэтому можно записать: ∡A = ∡C.

  2. Поскольку ∡A и ∡C равны между собой, а их сумма составляет 156°, то можно представить уравнение: ∡A + ∡C = 156°. Учитывая, что ∡A = ∡C, можно записать: 2∡A = 156°.

Чтобы найти значение ∡A, нужно разделить 156° на 2: ∡A = 156° / 2 = 78°.

Таким образом, величина ∡A равна 78°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос