Вопрос задан 10.07.2023 в 15:02. Предмет Геометрия. Спрашивает Титова Ника.

Основание треугольника равно 7см, а высота, проведенная к нему, равна 6см. Чему равна высота,

проведенная к стороне треугольника, равной 21см?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Майер Иван.

Площадь треугольника - половина произведения основания на высоту.

S = 7*6/2 = 21*h/2 => h=2 (см)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи воспользуемся подобием треугольников.

Дано, что основание треугольника равно 7 см, а высота, проведенная к нему, равна 6 см. Обозначим основание треугольника как "a" и высоту, проведенную к нему, как "h".

Таким образом, у нас есть треугольник с основанием 7 см и высотой 6 см. Мы можем найти соотношение между высотами этих треугольников.

Пусть "H" будет высотой, проведенной к стороне треугольника, равной 21 см. Так как треугольники подобны, соотношение между их высотами будет равно соотношению между их основаниями.

Итак, мы можем записать пропорцию:

h/a = H/21

Мы знаем, что h = 6 см и a = 7 см. Подставим эти значения в пропорцию:

6/7 = H/21

Теперь решим пропорцию, найдя значение H:

6 * 21 = 7 * H

126 = 7H

H = 126 / 7

H = 18

Таким образом, высота, проведенная к стороне треугольника, равной 21 см, равна 18 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос