Вопрос задан 08.07.2023 в 08:04. Предмет Геометрия. Спрашивает Волосожар Влада.

Два кола мають зовніішній дотик. Відстань між центрами цих кіл дорівнює ( 260 + 20 ) см. Знайдіть

радіуси кіл , якщо один з них у (52 + 3) разів більший від іншого.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Плотникова Мария.

Ответ: 5; 275

Объяснение:

Нехай х це радіус меньшого кола, тоді 55х радіус білошого. Відстань між центрами кіл дорівнює 280. Знаючи це складемо рівняння:

х+55х=280

56х=280

х=5

55х=275

Если ответ помог поставь пожалуйста как лучший

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Позначимо радіус меншого кола як "r", а радіус більшого кола як "R".

За умовою задачі, маємо такі відомості:

  1. Відстань між центрами коліс: 260 + 20 = 280 см.
  2. Радіус більшого кола у (52 + 3) = 55 разів більший від меншого.

Можна записати таку рівність відношення радіусів: R = 55r

Також, можемо використати відомі властивості геометричних фігур:

  1. Для кола: діаметр = 2 * радіус.
  2. Відстань між центрами двох коліс: сума їх радіусів.

Для першого кола: Діаметр = 2r Радіус = r

Для другого кола: Діаметр = 2R Радіус = R

За умовою задачі, відстань між центрами коліс дорівнює сумі їх радіусів: 2r + 2R = 280

Підставляючи R = 55r: 2r + 2(55r) = 280 2r + 110r = 280 112r = 280 r = 280 / 112 r = 2.5 см

Тепер можемо знайти R: R = 55r = 55 * 2.5 = 137.5 см

Отже, радіус меншого кола дорівнює 2.5 см, а радіус більшого кола дорівнює 137.5 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос