Вопрос задан 07.07.2023 в 22:12. Предмет Геометрия. Спрашивает Лукпанов Ануар.

Кут при основі рівнобедреного трикутника дорівнюс a, висота, проведена до осно ви,- h. Знайдіть

основу трикутника.​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедев Назын.

Ответ:

основа равнобедренного треугольника равна      \frac{2h}{tg a}

Объяснение:

обозначим половину основания х, тогда основание = 2х, т.к. теугольник равнобедренный, значит высота, опущенная на основу является и  медианой.

из определения tg a = \frac{h}{x}

х =  \frac{h}{tg a}  

2x = 2h / tg a

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

За даними, вам потрібно знайти основу рівнобедреного трикутника, знаючи його бічну сторону (a) і висоту (h), проведену до основи.

У рівнобедреному трикутнику бічна сторона, яка не є основою, є однаковою для обох рівних бічних сторін. Отже, відомо, що:

a = a (одна з бічних сторін)

Відомо також, що висота (h) проведена до основи (а) рівнобедреного трикутника розділяє його на два рівні прямокутні трикутники. Один з катетів прямокутних трикутників є половиною основи трикутника (a/2), а інший катет - це висота (h).

За теоремою Піфагора маємо: a2=(a2)2+h2a^2 = \left(\frac{a}{2}\right)^2 + h^2.

Розкривши квадрати та спростивши вираз, отримаємо: a2=a24+h2a^2 = \frac{a^2}{4} + h^2.

Помножимо обидва боки рівняння на 4, щоб позбутися від знаменника: 4a2=a2+4h24a^2 = a^2 + 4h^2.

Віднімемо a2a^2 від обох боків: 3a2=4h23a^2 = 4h^2.

Ділимо обидва боки на 3: a2=4h23a^2 = \frac{4h^2}{3}.

Витягаємо квадратний корінь з обох боків: a=2h3a = \frac{2h}{\sqrt{3}}.

Отже, основа рівнобедреного трикутника дорівнює 2h3\frac{2h}{\sqrt{3}}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос