
Вопрос задан 10.07.2018 в 18:29.
Предмет Геометрия.
Спрашивает Кичапов Дима.
Из точки к плоскости проведены две наклонные, длины которых равны 25 см и 30см. Разность проекции
этих наклонных на плоскости равна 11см. Вычислите расстояние от данной точки до плоскости.

Ответы на вопрос

Отвечает Жоламан Эльвира.
ВО - это высота, тоесть расстояние которое нам нужно найти.
АВ и ВС - наклоные, они и гипотенузы, АО и ОС - проєкции наклонных, они служат как катеты.
АВ = 30см, ВС = 25 см. Наибольшая проєкция та в которой гаклонна больша. В даном случае наклонна АВ больше, значит АО тоже больше за ОС.
⇒ АО - ОС = 11см
Пусть ОС = х, тогда АО = 11 + х
Рассмотрим прямоугольника АВО (угол О = 90 градусов).
ВО² = АВ² - АО² - за теоремой Пифагора
ВО² = 900 - (11 + х)²
ВО² = 900 - (121 + 22х + х²)
ВО² = 900 - 121 - 22х - х²
ВО² = 779 - 22х - х²
Теперь Рассмотрим прямоугольник ОВС:
ОВ² = ВС² - ОС²
ОВ² = 625 - х²
Приравниваем ОВ²
779 - 22х - х² = 625 - х²
22х = 154
х = 7
ОС = 7 см
ВО² = 625 - 49
ВО² = 576
ВО = 24 см



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili