Найдите площадь поверхности правильной треугольной пирамиды, высота которой равна 24 см, а сторона
основания равна 18 смОтветы на вопрос
Обозначим основание вершин треугольника А В С, а высоту ДО. В основании правильной трёхугольной пирамиды лежит равносторонний треугольник, поэтому АВ=ВС=АС=18см. Найдём его площадь по формуле: S=а²√3/4, где а- сторона треугольника.
S=18²√3/4=324√3/4=81√3см²
Итак: Sосн=81√3см²
Проведём в ∆АВС высоту ВК. Теперь найдём высоту ВК, через площадь по формуле: S=½×a×ВК, где а - сторона основания, а ВК- высота, которая проведена к стороне:
½×18×ВК=81√3
9h=81√3
ВК=81√3÷9
ВК=9√3см
Так как ∆АВС равносторонний, то высота ВК является ещё и медианой, и точка О является ортоцентром ∆АВС, пересекаясь в этой точке все медианы треугольника делятся точкой пересечения в отношении 2:1. Поэтому ВО:ОК=2:1. Обозначим эти пропорции как х и 2х и составим уравнение:
х+2х=9√3
3х=9√3
х=9√3÷3
х=3√3
Итак: ОК=3√3см, тогда ОВ=3√3×2=6√3см
Рассмотрим ∆ВОД. Он прямоугольный и в нём ВО и ДО являются катетами а ВД - гипотенуза. Найдём боковое ребро ВД по теореме Пифагора: ВД²=ОД²+ОВ²=
=24²+(6√3)²=576+36×3=576+108=684см
ВД=√684=6√19см
Так как пирамида правильная то все её рёбра равны: АД=СД=ВД=6√19см.
Найдём площадь боковой грани пирамиды по формуле: Рассмотрим боковую грань ВСД. Она является равнобедренным треугольником. Проведём апофему (высоту боковой грани) ДН. Она делит этот треугольник на
2 прямоугольных треугольника, в которых АН и СН - катеты, а ВД и СД - гипотенуза, и ДН является ещё медианой, поскольку ∆ДВС - равнобедренный, поэтому ВН=СН=18/2=9см
Найдём апофему ДН по теореме Пифагора: ДН²=СД²-СН²=(6√19)²-9²=
=36×19-81=684-81=603; ДН=√603=3√67см
ДН=3√67см
Теперь найдём площадь боковой грани пирамиды зная её сторону и апофему по формуле: S=½×а×h=½×9×3√67=4,5×3√67=
=13,5√67см²
Итак: Sбок.гр=13,5√67см²
Поскольку таких граней 3, то площадь боковой поверхности будет:
Sбок.пов=13,5√67×3=40,5√67см²
Теперь найдём площадь полной поверхности пирамиды, сложив площади её основания и боковой поверхности:
Sпол=Sосн+Sбок.пов=81√3+40,5√67=
=81×1,73+40,5×8,19=140,13+331,695=
=471,825см²
ОТВЕТ: Sосн=81√3≈140,13см²;
Sбок.пов=40,5√67≈331,695см²;
Sпол=471,825см²

Для нахождения площади поверхности правильной треугольной пирамиды можно воспользоваться следующей формулой:
Площадь поверхности = Площадь основания + Площадь боковой поверхности.
- Площадь основания: Площадь треугольника можно найти с помощью формулы Герона:
Полупериметр (s) = (a + b + c) / 2, где a, b, c - стороны треугольника.
В данном случае у нас равносторонний треугольник, поэтому a = b = c = 18 см.
s = (18 + 18 + 18) / 2 = 27 см.
Площадь основания (A) = √(s * (s - a) * (s - b) * (s - c)) = √(27 * 9 * 9 * 9) = √2187 = 33 см².
- Площадь боковой поверхности: Площадь боковой поверхности пирамиды можно найти по формуле:
Площадь боковой поверхности = (периметр основания) * (половина высоты).
Периметр основания (P) = 3 * сторона = 3 * 18 = 54 см.
Площадь боковой поверхности = 54 * (24 / 2) = 54 * 12 = 648 см².
- Площадь поверхности: Площадь поверхности = Площадь основания + Площадь боковой поверхности = 33 + 648 = 681 см².
Итак, площадь поверхности данной треугольной пирамиды составляет 681 см².
Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
