Вопрос задан 05.07.2023 в 10:23. Предмет Геометрия. Спрашивает Медведева Валерия.

Длина каждого ребра правильной треугольной пирамиды равна 8 см. Высота пирамиды равна 6 см. Найти

площадь полной поверхности и объем пирамиды.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федоткина Валентина.

Ответ: Sпол=70,65см²; V=67,5√3см³.

Объяснение: в основании правильной 3-угольной пирамиды лежит равносторонний треугольник поэтому все стороны основания равны. Обозначим вершины пирамиды АВСД с высотой ДО. Проведём из трёх вершин основания медианы АЕ, СМ, ВК. При пересечении они делятся в отношении 2:1, начиная от вершины угла. Рассмотрим ∆СДО. Он прямоугольный где ДО и СО- катеты, а СД- гипотенуза. Найдём СО по теореме Пифагора:

СО²=СД²-ДО²=8²-6²=64-36

СО√45=3√5см

СО=ВО=АО=3√5см

Так как медианы делятся в отношении 2:1, то МО=КО=ЕО=3√5/2=1,5√5см

Проведём апофему ДЕ. Она является гипотенузой в ∆ДЕО. Найдём апофему ДЕ по теореме Пифагора:

ДЕ²=ДО²+ЕО²=6²+(1,5√5)²=36+2,25×5=

=36+11,25=47,25; ДЕ=√47,25=15√0,21=

=15×√(21/100)=15√21/10см

Рассмотрим ∆ВОС. В нём известны 2 стороны и угол между ними. Найдём сторону основания ВС по теореме синусов:

ВС²=ВО²+СО²-2×ВО×СО×cos120°=

=(3√5)²+(3√5)²-2×3√5×3√5×(-½)=

=9×5+9×5-9×5=135; BC=√135=3√15см

Найдём площадь боковой грани пирамиды зная её высоту и сторону основания по формуле: Sбок.гр.=½×BC×ДЕ=

=½×3√15×15√21/10=9√315/4=3√35/4см²

Так как таких граней 3 то:

Sбок.пов=3√35/4×3=9√35/4см²

√35≈5,9;. √3≈1,7

Теперь найдём площадь основания по формуле:

Sосн=a²√3/4=(3√15)²√3/4=9×15√3/4=

=135√3/4см²

Sпол=Sосн+Sбок.пов=135√3/4+9√35/4=

=33,75×1,7+2,25×5,9=57,375+13,275=

=70,65см²

Теперь найдём объем пирамиды зная площадь основания и высоту по формуле:

V=⅓×Sосн×ДО=⅓×135√3/4×6=67,5√3см³.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади полной поверхности и объема правильной треугольной пирамиды с данными характеристиками, мы можем использовать следующие формулы:

  1. Площадь полной поверхности пирамиды:

    Площадь основания треугольной пирамиды = (a^2 * √3) / 4, где "a" - длина стороны треугольника (в данном случае 8 см).

    Площадь боковой поверхности пирамиды = (периметр треугольника * высота) / 2, где периметр треугольника = 3 * a.

    Общая площадь = Площадь основания + Площадь боковой поверхности.

  2. Объем пирамиды:

    Объем пирамиды = (Площадь основания * высота) / 3.

Подставляя данные значения (a = 8 см, высота = 6 см) в формулы:

  1. Площадь основания = (8^2 * √3) / 4 = 16√3 см².

  2. Периметр треугольника = 3 * 8 = 24 см. Площадь боковой поверхности = (24 * 6) / 2 = 72 см².

  3. Общая площадь = 16√3 + 72 = 16√3 + 72 см².

  4. Объем пирамиды = (16√3 * 6) / 3 = 32√3 см³.

Итак, площадь полной поверхности пирамиды составляет приблизительно 16√3 + 72 см², а её объем равен примерно 32√3 см³.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос