
TgA=0.75 CosA=? SinA=?


Ответы на вопрос

sinA=±3/5
cosA=±4/5
cosA=✓1/1+(tgA)^2
sinA=tgAcosA



To find the values of cosine (cos) and sine (sin) for angle A, given that the tangent (tg) of angle A is 0.75, we can use the following trigonometric identities:
- cos^2(A) + sin^2(A) = 1
- tan(A) = sin(A) / cos(A)
Given that tan(A) = 0.75, we can substitute this value into equation (2):
0.75 = sin(A) / cos(A)
Now, we can solve for sin(A) and cos(A) using algebraic manipulation:
sin(A) = 0.75 * cos(A) (multiplying both sides by cos(A))
Now, we can substitute this value of sin(A) into equation (1):
cos^2(A) + (0.75 * cos(A))^2 = 1
Expanding and simplifying:
cos^2(A) + 0.5625 * cos^2(A) = 1
1.5625 * cos^2(A) = 1
cos^2(A) = 1 / 1.5625
cos^2(A) = 0.64
Taking the square root of both sides:
cos(A) = ±√0.64
cos(A) = ±0.8
Since cosine is positive in the first and fourth quadrants, we take the positive value:
cos(A) = 0.8
Now, we can substitute this value of cos(A) into the equation for sin(A):
sin(A) = 0.75 * cos(A)
sin(A) = 0.75 * 0.8
sin(A) = 0.6
Therefore, for angle A, we have:
cos(A) = 0.8 sin(A) = 0.6


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili