Вопрос задан 26.06.2023 в 20:45. Предмет Геометрия. Спрашивает Асадуллаев Сахил.

2. Найдите сторону параллелограмма, если высота, опущенная на эту сторону, равна 12 см, а площадь

параллелограмма равна 28 см (╯︵╰,) (╯︵╰,) (╯︵╰,) Пожалуйста помогите. Срочно надо. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федина Арина.

Ответ:

 \\ a = 2 \frac{1}{3}

Объяснение:

Площадь параллелограмма вычисляется по формуле: S=h, где а - сторона параллелограмма, а h - высота, к которая проведена к этой стороне, поэтому

а= h=28/12=(28÷4)/(12÷4)=7/3=2цел 1/3


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения стороны параллелограмма, у которой высота опущена, можно воспользоваться формулой для площади параллелограмма:

Площадь параллелограмма (S) = высота (h) * сторона (a).

В данном случае, известна площадь параллелограмма (S = 28 см²) и высота (h = 12 см). Мы ищем сторону (a).

Используем формулу:

28 см² = 12 см * a.

Чтобы найти значение стороны (a), разделим обе стороны уравнения на 12 см:

a = 28 см² / 12 см.

a ≈ 2.33 см.

Таким образом, сторона параллелограмма, на которую опущена высота исходя из данных, равна приближенно 2.33 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос