Вопрос задан 23.06.2023 в 08:17. Предмет Геометрия. Спрашивает Сабенин Илья.

5. У прямокутну трапецію, висота якої дорівнює 4 см, а більша бічна сторона 6 см, можна вписати

коло. Знайдіть площу трапеції.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ганцгорн Алина.

Ответ:

20см²

Объяснение:

Дано:

ABCD- прямоугольная трапеция

АВ=4см

СD=6см

S=?

Решение.

В трапецию можно вписать окружность, тогда когда сумма оснований равна сумме боковых сторон.

АВ+CD=BC+AD

BC+AD=6+4=10см.

Средняя линия трапеции равна половине суммы оснований.

m=(BC+AD)/2; где m- средняя линия.

m=10/2=5см.

Площадь трапеции равна произведению высоты на среднюю линию трапеции.

S=h*m

S=AB*m=4*5=20см²


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для знаходження площі прямокутної трапеції, в яку можна вписати коло, ми можемо скористатися наступною формулою:

Площа трапеції = (сума довжини меншої і більшої баз трапеції / 2) * висота трапеції

У вас є такі дані:

  • Висота трапеції (h) = 4 см
  • Більша база трапеції (В) = 6 см

Тепер можемо використати формулу:

Площа трапеції = (6 + 6) / 2 * 4

Площа трапеції = 12 / 2 * 4

Площа трапеції = 6 * 4

Площа трапеції = 24 см²

Отже, площа прямокутної трапеції, в яку можна вписати коло, дорівнює 24 квадратним сантиметрам.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос