
Вопрос задан 03.07.2018 в 04:15.
Предмет Геометрия.
Спрашивает Шишов Вова.
Прямая А проходит через середину отрезка АБ перпендикулярна к нему Докажите что:а) каждая точка
прямой а равноудаленной от точек A и B б) каждая точка равноудаленная от точек A и B лежит на прямой а

Ответы на вопрос

Отвечает Галиуллов Булат.
Пусть а пересекает АВ в точке О.
а) Выберем любую точку С на прямой а. ΔАВС - равнобедренный, так как СО - медиана и высота, значит, АВ = ВС.
б) Пусть АС - СВ, где С - любая точка плоскости, удовлетворяющая равенству. Тогда ΔABC - равнобедренный и СО - медиана и высота. Значит, СО лежит на прямой а, т. е. С ∈ а.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili