Вопрос задан 20.06.2023 в 06:26. Предмет Геометрия. Спрашивает Щерба Лера.

Один з кутів ромба дорівнює 108⁰. знайдіть кути які утворює сторона ромба з його діагоналями​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Никулина Елизавета.

Ответ:Противоположные углы ромба равны между собой

<1=<3=108 градусов

<2=<4=(360-108•2):2=72 градуса

Диагонали ромба пересекаются под прямым углом,делят ромб на 4 равных прямоугольных треугольника и являются биссектрисами его углов

Углы,равные 108 градусов делятся диагональю(она же биссектриса) на два равных угла

108:2=54 градуса

Тоже самое и с другой парой углов

72:2=36 градусов

Как уже было сказано-при пересечении диагоналей получаются 4 равных прямоугольных треугольников,в данно конкретном случае у каждого из треугольников такая мера углов:

90 градусов;36 градусов;54 градуса

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Відповідаю детально. Один з кутів ромба дорівнює 108⁰. Знайдіть кути, які утворює сторона ромба з його діагоналями.

Дано: ABCD - ромб, AC і BD - діагоналі, ∠A = ∠C = 108°.

Знайти: ∠OAB, ∠OAD.

Розв'язання:

1. Діагоналі ромба є бісектрисами його кутів, тобто ділять його кути навпіл. Тому ∠OAB = ∠OBA = ∠OCA = ∠ODA = 108°/2 = 54°.

2. Діагоналі ромба перетинаються під прямим кутом, тому трикутник OAB - прямокутний. В прямокутному трикутнику сума гострих кутів дорівнює 90°, тому ∠AOB = 90° - ∠OAB = 90° - 54° = 36°.

Відповідь: кути, які утворює сторона ромба з його діагоналями, дорівнюють 54° і 36°.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос