Вопрос задан 17.06.2023 в 18:15. Предмет Геометрия. Спрашивает Боровикова Полина.

ABCD-параллелограмм С угла B проходит биссектриса BE разрезая CD. BE=13см BVC=7см.....

..D_______E______C.... . /...................... \........./...../........ ..................\..../A/____________.\/BПж обьесните как это вы рашаете
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шульц Ярослав.

Ответ:

биссектриса угла параллелограмма отрезает от него равнобедренный треугольник, следовательно если be =13, а bc=7, то ec= 7

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

ABCD is a parallelogram with an angle B. A bisector BE passes through angle B and intersects CD. It is given that BE = 13 cm and BVC = 7 cm. We need to explain how to solve this problem.

To solve this problem, we can use the properties of a parallelogram and the angle bisector theorem. Here's how we can approach it:

Properties of a Parallelogram:

1. Opposite sides of a parallelogram are equal in length. 2. Opposite angles of a parallelogram are equal in measure. 3. The diagonals of a parallelogram bisect each other.

Steps to Solve the Problem:

1. Since ABCD is a parallelogram, we know that AD = BC and AB = CD. 2. Let's denote the point of intersection of BE and AD as F. Since BE is the bisector of angle B, we can apply the angle bisector theorem to find the ratio of the lengths of AF and FD. - According to the angle bisector theorem, AF/FD = AB/BD. - Since AB = CD, we can rewrite the equation as AF/FD = CD/BD. 3. We are given that BE = 13 cm. Since the diagonals of a parallelogram bisect each other, we can conclude that AF = FD = 6.5 cm. 4. Now, we can find the length of AD using the property that opposite sides of a parallelogram are equal in length. Since AD = BC, AD = 6.5 cm. 5. We are given that BVC = 7 cm. Since opposite angles of a parallelogram are equal, angle BVC is equal to angle BAV. 6. Using the properties of a parallelogram, we can conclude that triangle BAV is congruent to triangle BVC. Therefore, angle BAV is also 7 cm. 7. Now, we can find the length of AB using the angle bisector theorem. According to the theorem, AB/BD = AV/VD. - Since AV = 6.5 cm and VD = 7 cm, we can rewrite the equation as AB/BD = 6.5/7. - Solving for AB, we get AB = (6.5/7) * BD. 8. Since AB = CD, we can substitute AB with CD in the equation: CD = (6.5/7) * BD. 9. We know that BE = 13 cm. Using the property that the diagonals of a parallelogram bisect each other, we can conclude that BD = 13 cm. 10. Substituting BD = 13 cm in the equation from step 8, we can solve for CD: CD = (6.5/7) * 13. 11. Simplifying the equation, we find that CD = 11.93 cm.

Therefore, the length of CD is approximately 11.93 cm.

Please note that the above explanation is based on the properties of a parallelogram and the angle bisector theorem.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос