Вопрос задан 03.06.2018 в 23:48. Предмет Геометрия. Спрашивает Беляев Даня.

В четырёхугольнике ABCD проведены биссектриса угла А и биссектриса угла В. Биссектриса угла А

пересекает сторону ВС в точке М, а биссектриса угла В — сторону AD в точке N. Известно, что MCDN — параллелограмм. Докажите, что ABCD — параллелограмм.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кабаш Диана.

Так как MCDN - параллелограмм, то MC║ND, значит АD║BC.
 
В четырёхугольнике ABMN AN║BM, он как минимум трапеция, значит биссектриса его угла отсекает от противоположной стороны отрезок, равный боковой стороне, а так как биссектрисы являются диагоналями, то все его стороны равны, следовательно ABMN - ромб. В нём АВ║MN, значит АВ║СД.
AB║CD, BC║AD ⇒ ABCD - параллелограмм.
Доказано.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос