
Диагонали параллелограмма ABCD пересекаются в точке O. Выразите векторы ad и vector dc через
векторы vector oc = a и vector bo = b. Выполните рисунок к заданию.

Ответы на вопрос

Ответ: см. во вложении
Объяснение: там же




Ответ:
Применяем правило треугольника сложения векторов . Смотри рисунок




Parallelogram ABCD and its Diagonals
In a parallelogram ABCD, the diagonals intersect at point O. We are asked to express vectors AD and DC in terms of vectors OC = A and BO = B.
To find vector AD, we can use the fact that in a parallelogram, opposite sides are parallel and equal in length. Therefore, vector AD is equal to vector OC plus vector BO.
AD = OC + BO.
Similarly, to find vector DC, we can use the fact that in a parallelogram, opposite sides are parallel and equal in length. Therefore, vector DC is equal to vector BO minus vector OC.
DC = BO - OC.
Let's illustrate this with a diagram:
``` A _______ B | | | | | | |_______| D C ```
In this diagram, O represents the point of intersection of the diagonals AC and BD. Vector OC represents the vector from O to C, and vector BO represents the vector from B to O.
Using the expressions we derived earlier, we can find vector AD and vector DC.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili