 
СРОЧНООООООО СРОЧНОООООО 3.15. В треугольнике ABC углы АиС равны 45 и 30" co- Ответственно, а
высота AD = 3 м. Найдите стороны треугольника. 0
        0
         0
        0
    Ответы на вопрос
 
        Ответ:
Дано:
∠A=45° , ∠C=30° . AD ⊥ BC , AD = 3 м
AB, BC, AC - ?
Из ΔADC(∠ADC=90°) , катет, который лежит против угла 30° равен половине гипотенузы. AC=2AD=2*3=6м
Сумма углов треугольника = 180° . ∠B=180°-(45°+30)°=105°
\begin{gathered}sin105^{\circ}=sin(135^{\circ}-30^{\circ})=sin135^{\circ}cos30^{\circ}-cos135^{\circ}sin30^{\circ}=\\\\=\frac{\sqrt{2}}{2}*\frac{\sqrt{3} }{2}+\frac{\sqrt{2} }{2}*\frac{1}{2}=\frac{\sqrt{6} }{4}+\frac{\sqrt{2} }{4}=\frac{\sqrt{6}+\sqrt{2}}{4}\end{gathered}
sin105
∘
=sin(135
∘
−30
∘
)=sin135
∘
cos30
∘
−cos135
∘
sin30
∘
=
=
2
2
∗
2
3
+
2
2
∗
2
1
=
4
6
+
4
2
=
4
6
+
2
По теореме синусов найдём BC :
\begin{gathered}\frac{BC}{sin45^{\circ}}=\frac{AC}{sin105^{\circ}}\\\\\frac{BC}{\frac{\sqrt{2} }{2} }=\frac{6}{\frac{\sqrt{6}+\sqrt{2}}{4}}\\\\BC\sqrt{2}=\frac{24}{\sqrt{6}+\sqrt{2}}\\\\BC\sqrt{2}=6(\sqrt{6}-\sqrt{2})\\\\BC=\frac{6\sqrt{6}-6\sqrt{2}}{\sqrt{2}}=6\sqrt{3}-6\end{gathered}
sin45
∘
BC
=
sin105
∘
AC
2
2
BC
=
4
6
+
2
6
BC
2
=
6
+
2
24
BC
2
=6(
6
−
2
)
BC=
2
6
6
−6
2
=6
3
−6
Найдём AB:
\begin{gathered}\frac{AB}{sin30^{\circ}}=\frac{BC}{sin45^{\circ}}\\\\\frac{AB}{\frac{1}{2} }=\frac{6\sqrt{3}-6 }{\frac{\sqrt{2} }{2} }\\\\2AB=\frac{12\sqrt{3}-12 }{\sqrt{2} }\\\\2AB=\frac{2\sqrt{2}(6\sqrt{3}-6)}{2}\\\\2AB=6\sqrt{6}-6\sqrt{2}\\\\AB=3\sqrt{6}-3\sqrt{2}\end{gathered}
sin30
∘
AB
=
sin45
∘
BC
2
1
AB
=
2
2
6
3
−6
2AB=
2
12
3
−12
2AB=
2
2
2
(6
3
−6)
2AB=6
6
−6
2
AB=3
6
−3
2
Ответ: AC = 6м , AB = 3\sqrt{6}-3\sqrt{2}3
6
−3
2
м , BC = 6\sqrt{3}-66
3
−6 м

 0
                    0
                     0
                    0
                 
            Для решения данной задачи, мы можем использовать тригонометрические соотношения в прямоугольном треугольнике.
Пусть сторона BC соответствует углу C, сторона AC соответствует углу A, а сторона AB соответствует углу B.
Известно, что углы А и С равны 45° и 30° соответственно. Также известно, что высота AD равна 3 метра.
Поскольку угол А равен 45°, мы можем использовать соотношение синуса для нахождения стороны AC:
sin(45°) = AD/AC
Переставляя переменные, получим:
AC = AD / sin(45°)
Заменяем известные значения и рассчитываем:
AC = 3 м / sin(45°) ≈ 4.24 м
Аналогично, мы можем использовать соотношение синуса для нахождения стороны BC:
sin(30°) = AD/BC
Переставляя переменные, получим:
BC = AD / sin(30°)
Заменяем известные значения и рассчитываем:
BC = 3 м / sin(30°) ≈ 6 м
Таким образом, сторона AC треугольника ABC примерно равна 4.24 м, а сторона BC примерно равна 6 м.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			