
Вопрос задан 28.06.2018 в 15:58.
Предмет Геометрия.
Спрашивает Батакова Света.
Стороны параллелограмма равны 12см и 8 см , а угол между высотами проведёнными из вершины тупого
угла , равен 30*градусов.Найдите площадь параллелограмма.

Ответы на вопрос

Отвечает Беляев Егорушка.
Пусть данный параллелограмм будет АВСД.
Сделаем соразмерно условию рисунок и рассмотрим его.
ВН высота, ⊥ АД и⊥ ВС,
ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒
Угол АВМ - прямой, угол АВН=90-60º, ⇒
угол ВАН=30º
ВН противолежит углу 30º, на этом основании рана половине АВ=4 см
Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена.
S АВСД=4*12=48 см²
Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см,
Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili