Вопрос задан 27.06.2018 в 04:26. Предмет Геометрия. Спрашивает Чугунова Карина.

Дан треугольник MNK. вычислите угол N в этом треугольнике, если м(3;-2;1)N(3;1;5)K(3;1;11)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Афонин Николай.

Найдём длины сторон треугольника. Сначала найдём длины проекций сторон на оси - через разности координат вершин:
Для М(3;-2;1) и N (3;1;5) это будет:
MN(0; 3; 4) - по-хорошему надо всегда вычитать второе из первого или наоборот, т.е. должно бы получиться "-3", но нас интересуют абсолютные значения.
Соответственно:
NK(0;0;6)
MK(0;3;10)
Из теоремы Пифагора квадрат длины отрезка будет равен сумме квадратов его проекций:
MN^2 = 0^2 + 3^2 + 4^2 = 25
MN=5
NK^2 = 0^2 + 0^2 + 6^2 = 36
NK = 6
MK^2 = 0^2 + 3^2 + 10^2 = 109
MK =  \sqrt{109}
Теперь вспомним теорему косинусов:
MK^2 = MN^2 + NK^2 - 2*MN*NK*cosMNK
109 = 25 + 36 - 2*5*6*cosMNK
48 = -60cosMNK
cosMNK = -48/60 = -4/5
MNK = arccos (-4/5)

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос