Вопрос задан 26.06.2018 в 23:49. Предмет Геометрия. Спрашивает Гаршин Влад.

Расстояние от точки М до каждой из вершин правельного треугольника АВС,равно 4.Найти расстояние от

точки М до плоскости АВС,если АВ равен 6см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Луенко Валерия.

Если соединим все точки, то получим правильную треугольную пирамиду МАВС, у которой МА=МВ=МС=4см, АВ=ВС=АС=6см. Искомое расстояние - это перпендикуляр МН на нижнюю грань АВС. Так как треуг. АВС правильный, то точка Н будет центром описанной (вписанной тоже) окружности. АН=ВН=СН=R.

Радиус окружности, описанной около правильного треугольника вычисляется по формуле: R=a/√3, где а - это сторона треуг АВС.

R=6/√3 см.

Из треуг-ка АНМ по теореме пифагора: МН=√(АM^2-AH^2)=√(16-36/3)=2 см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос