
Таблица 8.2 определение и свойства параллелограмм


Ответы на вопрос

Свойства параллелограмма, которые мы будем использовать :
1) Противоположные стороны параллелограмма равны.
2) Противоположные углы параллелограмма равны.
Признаки параллелограмма, которые мы будем использовать :
1) Если в четырёхугольнике противоположные стороны попарно равны, то это четырёхугольник - параллелограмм.
2) Если в четырёхугольнике две стороны равны и эти же стороны параллельны, то это четырёхугольник - параллелограмм.
3) Если в четырёхугольнике противоположные углы попарно равны, то этот четырёхугольник — параллелограмм.
— — —
№1. Дано :
Четырёхугольник AECF - параллелограмм.
ЕВ = DF.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
AF = EC (по 1-ому свойству параллелограмма), ЕВ = DF (по условию), AF = AD + DF ; EC = EB + BC⇒AD = BC.
Так как AF||EC (по определению параллелограмма), то и AD||BC (так как лежат на этих прямых), то четырёхугольник ABCD - параллелограмм по 2-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.
№2. Дано :
Четырёхугольник AMCN - параллелограмм.
МВ = ND.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
AM = CN (по 1-ому свойству параллелограмма), АМ||CN (по определению параллелограмма), тогда и АВ||CD (так как лежат на этих прямых).
АВ = АМ + МВ, CD = CN + ND ⇒ AB = CD.
Тогда четырёхугольник АВСD - параллелограмм по 2-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.
№3. Дано :
Четырёхугольник MBED - параллелограмм.
∠MDA = ∠EBC.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
∠М = ∠Е (по 2-ому свойству параллелограмма), MD = BE (по 1-ому свойству параллелограмма), ∠MDA = ∠EBC (по условию) ⇒∆АMD = ∆CEB по стороне и двум прилежащим к ней углам. Из равенства треугольников ∆AMD и ∆СЕВ следует равенство их соответствующих сторон — AD = BE ; AM = EC (напротив равных в равных треугольниках лежат равные стороны). Также учитывая равенство сторон МВ = ED (по 1-ому свойству параллелограмма), получаем такое соотношение :
МВ = АМ + АВ
ED = EC + CD
Из которого следует, что CD = AB.
Тогда четырёхугольник ABCD - параллелограмм по 1-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.
№4. Дано :
Четырёхугольник NBFD - параллелограмм.
∠А = ∠В.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
∠BAN = 180° - ∠A (по свойству смежных углов) и ∠FCD = 180° - ∠B, учитывая равенство ∠А и ∠В по условию, получаем, что ∠BAN = ∠FCD.
Но так как BF||ND (по определению параллелограмма), то ∠BAN = ∠АВС ; ∠FCD = ∠ADC (как внутренние накрест лежащие углы при параллельных прямых).
Учитывая равенство ∠BAN и ∠BAN и ∠АВС (по выше доказанному), то делаем вывод и о равенстве ∠АВС = ∠ADC.
Тогда четырёхугольник ABCD - параллелограмм по 3-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.
№5. Дано :
Четырёхугольник КРНТ - параллелограмм.
АТ = TD = BP = PC.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
КТ = РН (по 1-ому свойству параллелограмма).
КТ = АК + АТ⇒АК = КТ - АТ
РН = СН + РС⇒СН = РН - РС
Учитывая равенство отрезков КТ и РН ; АТ и РС, мы получаем, что АК = СН.
Аналогично :
КР = НТ (по 1-ому свойству параллелограмма).
КР = ВК + ВР⇒ВК = КР - ВР
НТ = DT + HD⇒HD = HT - DT
Делаем вывод, что ВК = HD.
Рассмотрим ∆АВК и ∆CHD.
∠K = ∠H (по 2-ому свойству параллелограмма).
Тогда ∆АВК = ∆CHD по двум сторонам и углу между ними.
Из равенство треугольников следует и равенство сторон АВ = CD (в равных треугольниках против равных углов лежат равные стороны).
Рассмотрим ∆ВРС и ∆DTA.
∠P = ∠T (по 2-ому свойству параллелограмма), АТ = TD = BP = PC (по условию). Тогда ∆ВРС = ∆DTA по двум сторонам и углу между ними. Из равенства треугольников вытекает равенство сторон ВС = AD.
Тогда четырёхугольник ABCD - параллелограмм по 1-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.
№6. Дано :
Четырёхугольник MNPK - параллелограмм.
BN = AM = РС = DK.
Доказать :
Четырёхугольник ABCD - параллелограмм.
Доказательство :
MN = PK ; NP = MK (по 1-ому свойству параллелограмма).
И так как BN = AM = РС = DK (по условию), то и ВМ = PD ; PN = MK.
Рассмотрим ∆АВМ и ∆CDP.
∠М = ∠Р (по 2-ому свойству параллелограмма), то и смежные с ними углы тоже равны между собой - ∠АМВ = ∠CPD (это следует из свойства смежных углов - в сумме они дают 180°).
Тогда ∆АВМ = ∆CDP по двум сторонам и углу между ними. Из равенства следует и равенство сторон АВ = CD (в равных треугольниках против равных углов лежат равные стороны).
Рассмотрим ∆BNC и ∆DKA.
Аналогично : ∠N = ∠K ⇒∠BNC = ∠AKD⇒∆BNC = ∆DKA по двум сторонам и углу между ними⇒AD = BC.
Тогда четырёхугольник ABCD - параллелограмм по 1-ому признаку параллелограмма.
Ответ :
Что требовалось доказать.




Таблица 8.2: Определение и свойства параллелограмма
Определение: Параллелограмм - это четырехугольник, у которого противоположные стороны параллельны и равны по длине.
Свойства параллелограмма:
Противоположные стороны параллельны: Стороны AB и CD параллельны, а также стороны AD и BC параллельны.
Противоположные стороны равны: Длина стороны AB равна длине стороны CD, а длина стороны AD равна длине стороны BC.
Противоположные углы равны: Угол A равен углу C, а угол B равен углу D.
Смежные углы дополнительны: Смежные углы, такие как A и B или C и D, в сумме дают 180 градусов.
Диагонали делятся пополам: Диагонали AC и BD пересекаются в точке E, и точка E делит каждую диагональ на две равные части.
Диагонали являются взаимно перпендикулярными: Диагонали AC и BD перпендикулярны друг другу, то есть образуют прямой угол.
Диагонали равны по длине в случае ромба: Если параллелограмм является ромбом (четырехугольник, у которого все стороны равны), то его диагонали также равны по длине.
Эти свойства являются основными характеристиками параллелограмма и помогают в определении, классификации и решении задач, связанных с этой фигурой.


Топ вопросов за вчера в категории Геометрия








Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili