
Вопрос задан 16.06.2018 в 21:29.
Предмет Геометрия.
Спрашивает Пестов Никита.
В треугольнике ABC на сторонах AB и BC взяты точки K и M соответственно, причём ∠ KMC+∠ A= 180°: а)
докажите, что KM/AC=BK/BC

Ответы на вопрос

Отвечает Бут Дмитрий.
<A+<KMC=180
Сумма углов в четырехугольнике равна 360,следовательно <C+<AKM=180
Если суммы противоположных углов равны,то вокруг четырехугольника можно описать окружность.
<AKC=<AMC-опираются на одну дугу АС
<KCM=<KAM-опираются на одну дугу KM
<AOK=<COM-вертикальные,значит дуга АК равна дуге МС
Следовательно <MAC=<KCA
Значит <A=<C и <K=<M
Отсюда ABCD равнобедренная трапеция,основания параллельны.
ΔВАС тоже равнобедренный и АВ=АС
Следовательно <BKM=<BAC,<BMK=<BCA-соответственные
Тогда ΔBCA∞ΔKBM
Отсюда KM/AC=BK/BC


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili