
Вопрос задан 23.01.2021 в 22:21.
Предмет Геометрия.
Спрашивает Миниахметов Ильдан.
Точка М равноудалена от вершин равностороннего треугольника АБС, отрезок МН-перпендикуляр,
проведённый из точки М к плоскости АБС. Найдите МА, если АБ=6, МН=2.

Ответы на вопрос

Отвечает Смигора Олег.
Точка М равноудалена от вершин равностороннего треугольника АВС, значит она проецируется в центр треугольника АВС, так как проекции равных наклонных равны. Итак, точка Н - центр треугольника АВС. В правильном треугольнике АВС высота АР является и медианой и биссектрисой угла А. АР = (√3/2)*а - формула. АР = 3√3. Высота АР правильного треугольника АВС делится центром Н в отношении 2:1, считая от вершины (свойство). Значит АН=АР*(2/3) = 2√3. По Пифагору из треугольника АМН имеем: АМ=√(АН²+МН²) = √(12+4) = 4.
Ответ: АМ=4 ед.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili