Вопрос задан 14.06.2018 в 17:29. Предмет Геометрия. Спрашивает Байтемирова Жания.

Основания прямоугольной трапеции равны 21 см и 28 см. Найдите радиус окружности, Вписанной в

трапецию.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Милюшина Ульяна.

Рисуем трапецию АВСД. Углы А и В прямые. Из вершины С опускаем высоту СК на основание АД. Так как в трапецию вписана окружность, то сумма боковых сторон равна сумме оснований.
АВ + СД = ВС + АД = 21 + 28 = 49 см
СД = 49 - АВ = 49 - СК
Рассмотрим треугольник СКД.
КД = АД - ВС = 28 - 21 = 7 см
По теореме Пфагора
СК^2 + КД^2 = CД^2
СК^2 + 7^2 = (49-СК)^2
CК^2 + 49 = 2401 - 98*CK + CK^2
98*CK = 2352
CK = 24 см
Высота СК является диаметром вписанной окружности
Радиус равен СК / 2 = 24 / 2 = 12 см

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос