Вопрос задан 12.06.2018 в 17:37. Предмет Геометрия. Спрашивает Парамонов Александр.

Y - центр окружности S1, вписанной в треугольник ABC. O - центр окружности S2, описанной около

треугольника BYC. а) Доказать, что точка O лежит на окружности, описанной около треугольника ABC б) Найти косинус угла BAC, если Rabc/Rs2=3/4
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Григорьева Дарья.

Пусть угол BAC = α

∠ABC + ∠ACB = 180° - α

∠IBC + ∠ICB = (180° - α)/2 = 90° - α/2 (т.к. центр вписанной окружности лежит в точке пересечения биссектрис)

∠BIC = 180° - (∠IBC + ∠ICB) = 180° - 90° + α/2 = 90° + α/2

∠BKC = 180° - ∠BIC = 180° - 90° - α/2 = 90° - α/2 (сумма противоположных углов четырехугольника вписанного в окружность равна 180°)

∠BOC - центральный углу ∠BKC => ∠BOC = 2*∠BKC = 2*(90° - α/2) = 180° - α

т.к. ∠BAC + ∠BOC = α + 180° - α = 180°, то около ABOC можно описать окружность, но это та же окружность, которая описана около треугольника АВС и на ней лежит точка О. Что и требовалось доказать

Ответ: доказано.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос