 
А) 5х2 – 10 = 0; б) х2 + 4х = 0; в) 3х2 + 7х + 2 = 0; г) х2 – 8х + 12 = 0; д) х2 + х + 3 = 0 е)
(2х - 1)(2х + 1) – (х - 3)(х + 1) = 18. Срочно! Решите пожалуйста( 0
        0
         0
        0
    Ответы на вопрос
 
            Solution:
a) To solve the equation 5x^2 - 10 = 0, we can start by adding 10 to both sides of the equation to isolate the term with x^2:
5x^2 - 10 + 10 = 0 + 10
Simplifying the equation gives us:
5x^2 = 10
Next, we can divide both sides of the equation by 5 to solve for x^2:
(5x^2)/5 = 10/5
Simplifying further, we get:
x^2 = 2
To find the value of x, we can take the square root of both sides of the equation:
√(x^2) = √2
Therefore, the solutions to the equation are:
x = ±√2
b) For the equation x^2 + 4x = 0, we can factor out x from the equation:
x(x + 4) = 0
This equation will be true if either x = 0 or x + 4 = 0. Solving for x gives us:
x = 0 or x = -4
c) To solve the equation 3x^2 + 7x + 2 = 0, we can factorize the equation:
(3x + 1)(x + 2) = 0
Setting each factor equal to zero, we get:
3x + 1 = 0 or x + 2 = 0
Solving for x gives us:
x = -1/3 or x = -2
d) For the equation x^2 - 8x + 12 = 0, we can factorize the equation:
(x - 2)(x - 6) = 0
Setting each factor equal to zero, we get:
x - 2 = 0 or x - 6 = 0
Solving for x gives us:
x = 2 or x = 6
e) To solve the equation (2x - 1)(2x + 1) - (x - 3)(x + 1) = 18, we can expand and simplify the equation:
(4x^2 - 1) - (x^2 - 9) = 18
Expanding the equation gives us:
4x^2 - 1 - x^2 + 9 = 18
Combining like terms, we get:
3x^2 + 8 = 18
Next, we can subtract 8 from both sides of the equation:
3x^2 = 10
Dividing both sides of the equation by 3 gives us:
x^2 = 10/3
To find the value of x, we can take the square root of both sides of the equation:
√(x^2) = √(10/3)
Therefore, the solutions to the equation are:
x = ±√(10/3)
Note: The solutions may be expressed as decimals or fractions depending on the desired level of precision.
I hope this helps! Let me know if you have any further questions.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			