Вопрос задан 03.09.2020 в 08:42. Предмет Алгебра. Спрашивает Чумак Виталий.

1)cos x cos2x = sin x sin2x    2)2cos^2 2x+3cos^2x=2   3)(sinx+cosx)^2=1+cosx 

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Equation 1: cos(x) + cos(2x) = sin(x) + sin(2x)

To solve this equation, we can start by simplifying the trigonometric expressions on both sides.

Let's express sin(2x) and cos(2x) in terms of sin(x) and cos(x) using the double angle identities:

sin(2x) = 2sin(x)cos(x) cos(2x) = cos^2(x) - sin^2(x)

Now we can substitute these expressions into the equation:

cos(x) + (cos^2(x) - sin^2(x)) = sin(x) + 2sin(x)cos(x)

Expanding the equation further:

cos(x) + cos^2(x) - sin^2(x) = sin(x) + 2sin(x)cos(x)

Rearranging the terms:

cos^2(x) - sin^2(x) - 2sin(x)cos(x) + cos(x) - sin(x) = 0

Using the identity cos^2(x) - sin^2(x) = cos(2x), the equation becomes:

cos(2x) - 2sin(x)cos(x) + cos(x) - sin(x) = 0

Now, let's combine like terms:

cos(2x) + (cos(x) - sin(x))(1 - 2sin(x)) = 0

To solve this equation, we need to consider two cases: when (1 - 2sin(x)) = 0 and when cos(2x) = 0.

Case 1: (1 - 2sin(x)) = 0 Solving this equation for sin(x), we get sin(x) = 1/2. This gives us two solutions: x = π/6 and x = 5π/6.

Case 2: cos(2x) = 0 Solving this equation for x, we get x = π/4 and x = 3π/4.

Therefore, the solutions to the equation cos(x) + cos(2x) = sin(x) + sin(2x) are x = π/6, x = 5π/6, x = π/4, and x = 3π/4.

Equation 2: 2cos^2(2x) + 3cos^2(x) = 2 + 3

To solve this equation, let's simplify the trigonometric expressions first.

Using the identity cos(2x) = 2cos^2(x) - 1, the equation becomes:

2(2cos^2(x) - 1) + 3cos^2(x) = 2 + 3

Expanding and simplifying:

4cos^2(x) - 2 + 3cos^2(x) = 5

Combining like terms:

7cos^2(x) - 2 = 5

Adding 2 to both sides:

7cos^2(x) = 7

Dividing both sides by 7:

cos^2(x) = 1

Taking the square root of both sides:

cos(x) = ±1

The cosine function takes on values between -1 and 1, so the only solutions are cos(x) = 1 and cos(x) = -1.

For cos(x) = 1, x = 0 + 2πn (where n is an integer). For cos(x) = -1, x = π + 2πn (where n is an integer).

Therefore, the solutions to the equation 2cos^2(2x) + 3cos^2(x) = 2 + 3 are x = 0 + 2πn and x = π + 2πn (where n is an integer).

Equation 3: (sin(x) + cos(x))^2 = 1 + cos(x)

To solve this equation, let's expand the square on the left side and simplify:

sin^2(x) + 2sin(x)cos(x) + cos^2(x) = 1 + cos(x)

Using the Pythagorean identity sin^2(x) + cos^2(x) = 1, the equation becomes:

1 + 2sin(x)cos(x) = 1 + cos(x)

Subtracting 1 and cos(x) from both sides:

2sin(x)cos(x) - cos(x) = 0

Factoring out cos(x):

cos(x)(2sin(x) - 1) = 0

This equation can be satisfied if either cos(x) = 0 or (2sin(x) - 1) = 0.

For cos(x) = 0, x = π/2 + πn (where n is an integer).

For 2sin(x) - 1 = 0, sin(x) = 1/2. This gives us two solutions: x = π/6 and x = 5π/6.

Therefore, the solutions to the equation (sin(x) + cos(x))^2 = 1 + cos(x) are x = π/2 + πn, x = π/6, and x = 5π/6 (where n is an integer).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос