
1)cos x cos2x = sin x sin2x 2)2cos^2 2x+3cos^2x=2 3)(sinx+cosx)^2=1+cosx


Ответы на вопрос

Equation 1: cos(x) + cos(2x) = sin(x) + sin(2x)
To solve this equation, we can start by simplifying the trigonometric expressions on both sides.
Let's express sin(2x) and cos(2x) in terms of sin(x) and cos(x) using the double angle identities:
sin(2x) = 2sin(x)cos(x) cos(2x) = cos^2(x) - sin^2(x)
Now we can substitute these expressions into the equation:
cos(x) + (cos^2(x) - sin^2(x)) = sin(x) + 2sin(x)cos(x)
Expanding the equation further:
cos(x) + cos^2(x) - sin^2(x) = sin(x) + 2sin(x)cos(x)
Rearranging the terms:
cos^2(x) - sin^2(x) - 2sin(x)cos(x) + cos(x) - sin(x) = 0
Using the identity cos^2(x) - sin^2(x) = cos(2x), the equation becomes:
cos(2x) - 2sin(x)cos(x) + cos(x) - sin(x) = 0
Now, let's combine like terms:
cos(2x) + (cos(x) - sin(x))(1 - 2sin(x)) = 0
To solve this equation, we need to consider two cases: when (1 - 2sin(x)) = 0 and when cos(2x) = 0.
Case 1: (1 - 2sin(x)) = 0 Solving this equation for sin(x), we get sin(x) = 1/2. This gives us two solutions: x = π/6 and x = 5π/6.
Case 2: cos(2x) = 0 Solving this equation for x, we get x = π/4 and x = 3π/4.
Therefore, the solutions to the equation cos(x) + cos(2x) = sin(x) + sin(2x) are x = π/6, x = 5π/6, x = π/4, and x = 3π/4.
Equation 2: 2cos^2(2x) + 3cos^2(x) = 2 + 3
To solve this equation, let's simplify the trigonometric expressions first.
Using the identity cos(2x) = 2cos^2(x) - 1, the equation becomes:
2(2cos^2(x) - 1) + 3cos^2(x) = 2 + 3
Expanding and simplifying:
4cos^2(x) - 2 + 3cos^2(x) = 5
Combining like terms:
7cos^2(x) - 2 = 5
Adding 2 to both sides:
7cos^2(x) = 7
Dividing both sides by 7:
cos^2(x) = 1
Taking the square root of both sides:
cos(x) = ±1
The cosine function takes on values between -1 and 1, so the only solutions are cos(x) = 1 and cos(x) = -1.
For cos(x) = 1, x = 0 + 2πn (where n is an integer). For cos(x) = -1, x = π + 2πn (where n is an integer).
Therefore, the solutions to the equation 2cos^2(2x) + 3cos^2(x) = 2 + 3 are x = 0 + 2πn and x = π + 2πn (where n is an integer).
Equation 3: (sin(x) + cos(x))^2 = 1 + cos(x)
To solve this equation, let's expand the square on the left side and simplify:
sin^2(x) + 2sin(x)cos(x) + cos^2(x) = 1 + cos(x)
Using the Pythagorean identity sin^2(x) + cos^2(x) = 1, the equation becomes:
1 + 2sin(x)cos(x) = 1 + cos(x)
Subtracting 1 and cos(x) from both sides:
2sin(x)cos(x) - cos(x) = 0
Factoring out cos(x):
cos(x)(2sin(x) - 1) = 0
This equation can be satisfied if either cos(x) = 0 or (2sin(x) - 1) = 0.
For cos(x) = 0, x = π/2 + πn (where n is an integer).
For 2sin(x) - 1 = 0, sin(x) = 1/2. This gives us two solutions: x = π/6 and x = 5π/6.
Therefore, the solutions to the equation (sin(x) + cos(x))^2 = 1 + cos(x) are x = π/2 + πn, x = π/6, and x = 5π/6 (where n is an integer).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili