
1.√75/√3 и 2.√6^2 умножить на 3^4


Ответы на вопрос

1. To solve the expression √75/√3, we need to simplify each square root first.
The square root of 75 can be simplified by factoring it into its prime factors: 75 = 3 * 5 * 5.
Then, we can rewrite the square root of 75 as the square root of (3 * 5 * 5). Using the property of square roots, we can split the square root into two separate square roots: √(3 * 5 * 5) = √3 * √5 * √5.
Simplifying further, we have √3 * 5 * 5 = 5√3.
Next, let's simplify the square root of 3. Since 3 doesn't have any perfect square factors, we cannot simplify it any further. Therefore, the expression becomes (5√3) / √3.
To divide two square roots, we can multiply both the numerator and denominator by the conjugate of the denominator, which is √3.
(5√3 * √3) / (√3 * √3) = (5√3 * √3) / 3.
Multiplying the square roots, we have 5 * 3 = 15.
So, the simplified form of √75/√3 is 15.
2. Now let's solve the expression √6^2 * 3^4.
First, we evaluate √6^2. The square of 6 is 6 * 6 = 36. Therefore, √6^2 = √36 = 6.
Next, we evaluate 3^4. The fourth power of 3 is 3 * 3 * 3 * 3 = 81.
Now, we multiply the two results: 6 * 81 = 486.
So, the value of √6^2 * 3^4 is 486.
To summarize: 1. √75/√3 simplifies to 15. 2. √6^2 * 3^4 simplifies to 486.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili