
Вопрос задан 09.06.2018 в 12:58.
Предмет Алгебра.
Спрашивает Вишнёвская Ксения.
в равнобедренном треугольнике abc с основанием ab биссектриса al перпендикулярна медиане bm.
периметр треугольникка lmc равен 99. надите треугольник авс.

Ответы на вопрос

Отвечает Гафурова Дарина.
O - точка пересечения биссектрисы AL и медианы BM
треугольники AOM и AOB равны по стороне и 2-м прилеж.к ней углам (AO общая, углы равны, т.к. AL биссектриса и треуг.прямоугольные по условию) => AB=AM
треуг.MAB равнобедренный => биссектриса AO и медиана => MO=OB
треуг.MOL и LOB равны по 2-м сторонам и углу между ними (OL общая и углы прямые) =>
ML=LB
AC=BC т.к. треуг.ABC равнобедренный, AM=MC, т.к. BM медиана
периметр ABC = AB+2AC = AM+2*2AM = 5AM
периметр LMC=99=MC+CL+LM = AM+BC-BL+LM = AM+BC = AM+2AM = 3AM
AM = 99/3 = 33
периметр ABC = 5*33 = 165


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili