Вопрос задан 05.07.2020 в 21:55. Предмет Алгебра. Спрашивает Копосович Ярослав.

Упростить выражение.Закончите пример.помогите решить, срочно!!!​


0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Авдеева Анастасия.

Ответ:  1 .

Решение:

1)\; \frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\frac{a\sqrt{a}+b\sqrt{b}-\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\frac{a\sqrt{a}+b\sqrt{b}-a\sqrt{b}-b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\\\\=\frac{\sqrt{a}(a-b)-\sqrt{b}(a-b)}{\sqrt{a}+\sqrt{b}}=\frac{(a-b)(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}=\frac{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}=(\sqrt{a}-\sqrt{b})^2

2)\; \; (\sqrt{a}-\sqrt{b})^2\cdot \Big (\frac{\sqrt{a}+\sqrt{b}}{a-b}\Big )^2=(\sqrt{a}-\sqrt{b})^2\cdot \Big (\frac{\sqrt{a}+\sqrt{b}}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}\Big )^2=\\\\=(\sqrt{a}-\sqrt{b})^2\cdot \frac{1}{(\sqrt{a}-\sqrt{b})^2}=1

0 0
Отвечает Кадрова Русалина.

1)

(а√а + в√в) / (√а + √в)  -  √ав =

= (а√а + в√в  -  √ав(√а + √в)) / (√а + √в) =

= (а√а + в√в  -  а√в - в√а) / (√а + √в) =

= (а(√а - √в) - в(√а - √в)) / (√а + √в) =

= (√а - √в)(а - в) / (√а + √в) =

= (√а - √в)(√а - √в)(√а + √в) / (√а + √в) =

= (√а - √в)(√а - √в) = (√а - √в)² ,

2)

((√а + √в) / (а - в))² =

= ((√а + √в) / (√а - √в)(√а + √в))² =

= (1 / (√а - √в))²,

3)

(√а - √в)²  *   (1 / (√а - √в))² =

= (√а - √в)² / (√а - √в)² = 1,

ответ:  1

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос