Вопрос задан 30.06.2020 в 16:33. Предмет Алгебра. Спрашивает Солоневич Соня.

Найти tg альфа/2, если sin альфа = 1/3 и П/2 больше или равен альфа, а альфа больше или равен П.

Задание №40.68.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кунгурцева Елизавета.
Cos²(α)=1-sin²(α)=1-1/9=8/9. А так как угол α лежит во 2 четверти, то cos(α)<0. Тогда cos(α)=-√8/9=-2*√2/3. tg(α/2)=(1-cos(α))/sin(α)=3+2*√2.

Вывод формулы для tg(α/2).

tg(α/2)=sin(α/2)/cos(α/2), cos(α)=cos²(α/2)-sin²(α/2), 1-cos(α)=sin²(α/2)+cos²(α/2)-((cos²(α/2)-sin²(α/2))=2*sin²(α/2), sin(α)=2*sin(α/2)*cos(α/2). Тогда (1-cos(α))/sin(α)=sin(α/2)/cos(α/2)=tg(α/2)
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос